Analysis of Elevation Changes of Pine Island Glacier and Simulation of its Spatial Characteristics

Ute C. Herzfeld

Cooperative Institute for Research in Environmental Sciences and

Department of Applied Mathematics
University of Colorado at Boulder
herzfeld@tryfan.colorado.edu

With input from

PatrickMcBricde, Bruce Wallin, Danielle Lirette, Steve Sucht, Jay Zwally, John DiMarzio

Antarctica with Walgreen Coast (box)

The Role of Pine Island Glacier and Thwaites Glacier in Stability Scenarios for the West-Antarctic Ice Sheet

Walgreen Coast — GLAS Data

GLA06 Data, (Laser 2A, gain-crit, rel18), Oct/Nov 2003, vario(350,3450,6000m), search-rg 30km, 1:5000000, gla06.1.gain.0.col8

GLA06 Data, (Laser 2A, gain-crit, rel18), Oct/Nov 2003, vario(350,3450,6000m), search-rg 30km, 1:2000000, gla06.1.gain.smallpine2.v2.col8

Pine Island Glacier — ERS—1 Data, 1995

1:2000000, m261e243-279n71-77.e.smallpine2.v2.col8

scale 1:2000000 diff glasgain-ers1.wers1cont.smallpine2.col10.v2.totps 20050404 gla06.1.gain.smallpine2.0.dtm minus m261e243-279n71-77.e.smallpine2.0.dtm

Results: ICESAt — Pine Island Glacier

- GLAS measures ice surface altimetry with unprecedented accuracy and precision
- DEMs derived from GLAS data using geostatistical analysis can be utilized for elevation change detection, sufficient for geophysical analysis
- Thinning rates in Pine Island Glacier have been increasing
- The observed retreat of Pine Island Glacier is attributed to internal processes in the glacier, related to dynamic thinning

Does this trend continue?

Change over 8 years: 2005-1995

scale 1:2000000 diff glasgain-ers1.wers1cont.smallpine2.col10.v2.totps 20050404 gla06.1.gain.smallpine2.0.dtm minus m261e243-279n71-77.e.smallpine2.0.dtm

Change over 10 years: 2005-1995

scale 1:2000000 diff.gla12 l3c-ers1.wers1cont.smallpine2.totps 20080927 gla12 rel28 l3c-ers1.dtm (diff.gla12 l3c-ers1.smallpine2.mx)

Change over 11 years 2006 (L3E) -1995

Change over 11 years 2006 (L3F) -1995

scale 1:2000000 diff.gla12 l3f-ers1.wers1cont.smallpine2.totps 200809027 gla12 rel28 l3f-ers1.dtm (diff.gla12 l3f-ers1.smallpine2.mx)

Change in ICESat years —
Analysis based on GLAS data only

Change over 2 years 2005 (L3C) - 2003 (L2A)

scale 1:2000000 diff.gla12 l3c-l2again.smallpine2.totps 20080927 diff.gla12 l3c-l2again.smallpine2.mx

Change over 3 years 2006 (L3E) - 2003 (L2A)

scale 1:2000000 diff.gla12 l3e-l2again.smallpine2.totps 20080927 diff.gla12 l3e-l2again.smallpine2.mx

Change over 3 years 2006 (L3F) - 2003 (L2A)

scale 1:2000000 diff.gla12 l3f-l2again.smallpine2.totps 20080927 diff.gla12 l3f-l2again.smallpine2.mx

Change over 1 year 2006-05 (L3F) - 2005-05 (L3E)

scale 1:2000000 diff.gla12 l3f-l3c.smallpine2.totps 20080927 diff.gla12 l3f-l3c.smallpine2.mx

Seasonal Signal 2006-05 (L3F) - 2006-02 (L3E)

scale 1:2000000 diff.gla12 l3f-l2again.smallpine2.totps 20080927 diff.gla12 l3f-l2again.smallpine2.mx

Conditional Simulation:

Scale-dependent fractal fields with natural roughness at every scale

Role of Surface Roughness

To assess the potential of a multi-beam channel to measure high-resolution topography, we need information on spatial subscale roughness (ice surface roughness at a resolution higher than that of GLAS observations).

What is spatial surface roughness?

- a derivative of (micro)topography
- → characterization of spatial behavior

(3.) How do we measure surface roughness? — The GRS!

Remote Sensing of Ice Surfaces

Radar Altimetry 3 km grids

MISR 275 m or 1,000 m pixels

SAR 12.5 m pixels

ATM 7 m resolution

Videography Submeter resolution

The missing scale

THE GRS 0.2 m resolution

Material properties Microscopic scale

GRS Data – Greenland Ice Sheet

GRS Data – Roughness Model

GRS Data

- data in 8 or 16 channels with across-track resolution 0.2 m
- along-track resolution $\approx 0.1 \text{ m}$
- subcentimeter vertical accuracy

DEMs from GRS data

- 0.2m grids
- areas typically 25 m by 200 m to 200 m by 200 m

Approach: Conditional Simulation of Ice Surfaces

- (1) Use GLAS DEMs as low-res boundary conditions
- (2) Use GRS data (from Greenland) to derive spatial surface roughness parameters using vario functions
- (3) Derive SIMSURF model parameters:
 - scale breaks and their resolutions
 - (b) at every scale range:
 - (b.1) fractal dimension
 - (b.2) direction of anisotropy
 - (b.3) anisotropy factor
- (4) Use SIMSURF software (Herzfeld and Overbeck) to generate ice surface
- (5) Sample model data sets for SB and MB data
- (6) Analyze model data sets

The SIMFRACT method for simulation of scale-dependent fractal surfaces with natural roughness at each scale

- (A) Data analysis part
 - (1) Calculate scale-dependent dimensions (a Variogram method, b Fourier method, c Isarithm method)
 - 2) Determine homogeneity ranges of scale
 - Determine anisotropies at each scale range
- (B) Simulation part
 - (4) Set up a simulation network, matching scale breaks
 - (5) Decide on scale ranges to interpolate versus ranges to simulate
 - (6) Select interpolation method (Shephard, 4-pt)
 - (7) Select simulation method (conditional, unconditional; using Fourier filter method for uncondl simulation of scale-dependent Fractional Brownian surfaces)
 - (8) Select a method to merge scales

Variogram method for function graphs

PROPOSITION 9 (Variogram method for estimation of box dimension of graph of a real function): Let $f: \mathcal{R} \to \mathcal{R}$ be a continuous and self-affine function. Assume existence of the autocorrelation function C of f. Then there is a real number c > 0, such that

$$\gamma(h) = C(0) - C(h) \approx c h^{4-2s} \tag{22}$$

and $dim_B(graphf) = s$.

If Hoelder conditions are satisfied, the box dimension of f may be calculated according to

$$dim_B(graph f) = s \approx 2 - \frac{1}{2} \frac{\log(\gamma(h))}{\log(h)} + \frac{c}{\log(h)} \approx 2 - \frac{1}{2} \lim_{h \to 0} \frac{\log(\gamma(h))}{\log(h)}$$

(23)

which may be estimated using linear regression.

Variogram method in \mathbb{R}^3

REMARK 10 (Variogram method for estimation of box dimension for surfaces in \mathbb{R}^3): Let $(x,y)\in\mathcal{D}\subseteq\mathbb{R}^2$, $f:\mathcal{D}\to\mathcal{R}$ an (elevation) function, and $\mathcal{S}=\{(x,y,z)|(x,y)\in\mathcal{D} \text{ and } z=f(x,y)\}$. Let $d:\mathcal{R}^2\to\mathcal{R}$ denote distance according to the L_2 -norm. Assume $\dim_B(\mathcal{S})=\dim_B(\mathcal{S}\cap\mathcal{T})+1$ for each intersection $\emptyset\neq\mathcal{S}\cap\mathcal{T}$ with a plane \mathcal{T} , and assume that the restriction $f|_{\mathcal{S}\cap\mathcal{T}}$ satisfies all the conditions of Propositions 8 and 9 above.

Then the following approximations hold:

$$\gamma(d(h)) = C(0) - C(d(h)) \approx cd(h)^{6-2s}$$
(24)

and

$$dim_B(\mathcal{S}) \approx 3 - \frac{1}{2} \lim_{d(h) \to 0} \frac{\log(\gamma(d(h)))}{\log(d(h))}$$
 (25)

which may be estimated using linear regression.

Wiener-Kinchine Theorem

The Wiener-Kinchine theorem states that the power-spectral density is the Fourier transform of the autocorrelation function:

$$C(h) \rightleftharpoons |\Phi(p)|^2 = E_{SP}[f](p) \tag{32}$$

For two-dimensional functions, the Wiener-Kinchine theorem states that the power-spectral density is the Fourier transform of the covariance function.

Fourier method for function graphs

PROPOSITION 11 (Fourier method for calculation of box dimension for graph of a real function): Let $f: \mathcal{R} \to \mathcal{R}$ be a continuous and self-affine function, assume existence of the autocorrelation function C of f. Let $\Phi(p)$ denote the Fourier transform of f and E_{SP} the power-spectral density. If

$$E_{SP}[f](p) = |\Phi(p)|^2 \sim \frac{1}{p^{\beta}}$$
 for some $\beta \epsilon \mathcal{R}$, (33)

then

$$\beta \approx 5 - 2dim_B(graph f)$$
 and $dim_B(graph f) \approx \frac{5 - \beta}{2}$. (34)

Pine Island Glacier — L2A GLAS Data (2003)

3D view upglacier, based on DEM from GLAS data, with GLAS data locations

Conditional Simulation: Pine Island Glacier

3D view upglacier, based on DEM from L2 (2003) GLAS data

Conditional Simulation: Pine Island Glacier – Enlarged Subarea

Gradient Map from Multi-Beam Data

Histograms of Gradients

Objective: Investigate how well variability of surface slope is captured in SB and MB (8beam) observations

for MB data from Pinegl-Simul DEM (max. slope 4.3°)

for entire Pinegl-Simul DEM. (max. slope 4.9°)

for SB data from Pinegl-Simul DEM (max. slope 2.9°)

Questions?

Conclusions Multi-Beam -2

- (A) Multi-Beam or only Single-Beam Lidar for ICESat-2?
 - (1) Multi-beam lidar observations will yield 3-dimensional information on land and sea ice elevation
 - Locally-known hi-res elevation captures gradient and directional derivative distribution of the entire surface to 99.9 percentile
 - (3) Spatial statistical properties from swath data can be used to extrapolate between ground tracks
- → With a MB system, ICESat-2 can meet and advance the "Decadal Survey" objectives for cryospheric observation, change detection, modeling and prediction.

(B) Swath Mapper (16 Beams) — Split Beam (4 or 2 Beams)

- (1) Swath Mapper
 - (a) Achieves superior spatial resolution and hence better accuracy and more spatial information (as in (A)) (140m gradient fields, 0.85m along-track sampling)
 - More susceptible to cloud/ aerosol caused data loss, but studies so far indicate good spatial data collection
 - (c) Instrument to date only tested on aircraft

(2) Split Beam

- (a) Twice the track density as \overline{SB} , with 140m offset data in 2° rotated mode
- (b) Cannot derive gradient fields with 140m grids, but across-track slope locally, otherwise 4km gradient fields
- (c) Split-beam technology with pulse-repetition lidar with specs similar to GLAS